Stat 543 Assignment 10
Asymptotics of LRTs and Wald and Score Tests

1. (More Estimation in a Zero-Inflated Poisson Model) Consider the situation of Problem
1 of Assignment 9, and in particular, inference based on the n = 20 observations
Vardeman simulated from the distribution.

(a) Find a large sample 90% joint confidence region for (p, A) based on the loglikeli-
hood function (based on inverting LRT’s). Plot this in the (p, A)-plane and to
the extent possible, compare it to the elliptical region you found in Assignment
9.

(b) Note that for a fixed value of A,
M

_ n
P exp (—A) — 1
maximizes the likelihood. Use this fact to find and plot the profile loglikelihood
for \. Use this plot and make an approximate 90% confidence interval for .
How does this interval compare to the one you found in part e) of Problem 1 from
Assignment 97

2. Consider again the model of Problem 2 of Assignment 9. Below are n = 20 observations
that Vardeman simulated from this model.

1.36,1.35,0.78,1.85,2.32,0.55, 1.07, —0.57, —0.38, 0.25,
—0.36,1.71,1.40,0.46, 3.16, —0.78,0.69, —0.03, 1.26, 0.44

(a) Plot the loglikelihood for this sample. What, approximately, is the maximum
likelihood estimate for a7

(b) If you wished to test the hypothesis Hy:ae = .4 with Type I error probability .1,
what would be your decision here? Carefully explain. (Use a likelihood ratio
test).

(c) Use the plot from a) and make an approximate 90% confidence interval for «
based on the likelihood function (based on inverting LRT’s). Use the method of
f) of Problem 2 on Assignment 9 and make another approximate 90% interval.
How do these 2 intervals compare?

3. Suppose that X, Y and Z are independent binomial variables, X ~bin(n, p;), Y ~bin(n, ps)
and Z ~bin(n, p3). For the parameter space (for (py,p2,p3)) © = [0, 1], we will con-
sider testing Hy:p; = pa = p3 based on (X,Y, 7).

(a) Find the general forms of the likelihood ratio tests, the Wald tests and the score
tests of this hypothesis.



(b)

Use the fact that the parameter space here is basically 3-dimensional while ©g
is basically 1-dimensional so that there are 2 independent constraints involved
and the limiting y? distributions of the test statistics thus have v = 2 associated
degrees of freedom to actually carry out these tests with a ~ .05if X = 33,Y = 53
and Z = 59, all based on n = 100.

The Following Are Problems About the Large Sample Behavior of Posterior
Distributions and Likely Will NOT be Covered on the Stat 543 Final Exam.

1. Problems 1.2.4 and 1.2.5 of B&D.

2. Consider Bayesian inference for the binomial parameter p. In particular, for sake of
convenience, consider the Uniform (0,1) (Beta(c, 3) for « = = 1) prior distribution.

(a)

It is possible to argue from reasonably elementary principles that in this binomial
context, where © = (0, 1), the Beta posteriors have a consistency property. That
is, simple arguments can be used to show that for any fixed ppand any € > 0, for
X, ~binomial (n,pg), the random variable
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(which is the posterior probability assigned to the interval (py—¢, po+¢€)) converges
in pg probability to 1 as n — oo. This part of the problem is meant to lead you
through this argument. Let ¢ > 0 and o > 0.

Tn a+xn

i) Argue that there exists m such that if n > m, - p e

0,1,...,n.
ii) Note that the posterior variance is (

< £V, =

a+pB+n)?(at+B+n+1)

that if n > m/ the probability that the posterior assigns to (aoj:%ﬁ’n — % a‘fﬁﬁ?h + §)
is at least 1 — § Vz,, =0,1,...,n.

iii) Argue that there is an m” such that if n > m” the p, probability that
|%—po| < g is at least 1 — 4.

Argue there is an m’ such

Then note that if n > max(m,m’, m”) i) and ii) together imply that the posterior
probability assigned to (%" — %, I+ %) is at least 1 — ¢ for any realization z,,.
Then provided !% — p0| < ¢ the posterior probability assigned to (po — €, po + €)
is also at least 1 — ¢. But iii) says this happens with py probability at least 1 — 0.
That is, for large n, with py probability at least 1 — ¢§, Y,, > 1 — . Since ¢ is
arbitrary, (and Y,, < 1) we have the convergence of Y, to 1 in py probability.

Vardeman intends to argue in class that posterior densities for large n tend to
look normal (with means and variances related to the likelihood material). The
posteriors in this binomial problem are Beta (« + 2, 5 + (n — z,,)) (and we can
think of X, ~Bi (n, pg) as derived as the sum of n iid Bernoulli (py) variables). So
we ought to expect Beta distributions for large parameter values to look roughly
normal. To illustrate this do the following. For p = .3 (for example ... any
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other value would do as well), consider the Beta (a+np, 5 +n(1—p)) (posterior)
distributions for n = 10,20, 40 and 100. For p,, ~Beta (a+np, 5+ n(1 — p)) plot
the probability densities for the variables

p(1—p)

on a single set of axes along with the standard normal density. Note that if W
has pdf f(-), then aWW + b has pdf g(-) = L1f (=2). (Your plots are translated
and rescaled posterior densities of p based on possible observed values x,, = .3n.)
If this is any help in doing this plotting, Vardeman tried to calculate values of
the Beta function using MathCad and got the following: (B(4,8))"! = 1.32 x
103, (B(7,15))7! = 8.14 x 10°, (B(13,29))~! = 2.291 x 10" and (B(31,71))"! =
2.967 x 10%.
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