
Stat 543 Assignment 10
Asymptotics of LRTs and Wald and Score Tests

1. (More Estimation in a Zero-Inflated Poisson Model) Consider the situation of Problem
1 of Assignment 9, and in particular, inference based on the n = 20 observations
Vardeman simulated from the distribution.

(a) Find a large sample 90% joint confidence region for (p, λ) based on the loglikeli-
hood function (based on inverting LRT’s). Plot this in the (p, λ)-plane and to
the extent possible, compare it to the elliptical region you found in Assignment
9.

(b) Note that for a fixed value of λ,

p =

n0
n
− 1

exp (−λ)− 1

maximizes the likelihood. Use this fact to find and plot the profile loglikelihood
for λ. Use this plot and make an approximate 90% confidence interval for λ.
How does this interval compare to the one you found in part e) of Problem 1 from
Assignment 9?

2. Consider again the model of Problem 2 of Assignment 9. Below are n = 20 observations
that Vardeman simulated from this model.

1.36, 1.35, 0.78, 1.85, 2.32, 0.55, 1.07,−0.57,−0.38, 0.25,

−0.36, 1.71, 1.40, 0.46, 3.16,−0.78, 0.69,−0.03, 1.26, 0.44

(a) Plot the loglikelihood for this sample. What, approximately, is the maximum
likelihood estimate for α?

(b) If you wished to test the hypothesis H0:α = .4 with Type I error probability .1,
what would be your decision here? Carefully explain. (Use a likelihood ratio
test).

(c) Use the plot from a) and make an approximate 90% confidence interval for α
based on the likelihood function (based on inverting LRT’s). Use the method of
f) of Problem 2 on Assignment 9 and make another approximate 90% interval.
How do these 2 intervals compare?

3. Suppose thatX, Y and Z are independent binomial variables,X ∼bin(n, p1), Y ∼bin(n, p2)
and Z ∼bin(n, p3). For the parameter space (for (p1, p2, p3)) Θ = [0, 1]3, we will con-
sider testing H0:p1 = p2 = p3 based on (X, Y, Z).

(a) Find the general forms of the likelihood ratio tests, the Wald tests and the score
tests of this hypothesis.
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(b) Use the fact that the parameter space here is basically 3-dimensional while Θ0

is basically 1-dimensional so that there are 2 independent constraints involved
and the limiting χ2 distributions of the test statistics thus have ν = 2 associated
degrees of freedom to actually carry out these tests with α ≈ .05 ifX = 33, Y = 53
and Z = 59, all based on n = 100.

The Following Are Problems About the Large Sample Behavior of Posterior
Distributions and Likely Will NOT be Covered on the Stat 543 Final Exam.

1. Problems 1.2.4 and 1.2.5 of B&D.

2. Consider Bayesian inference for the binomial parameter p. In particular, for sake of
convenience, consider the Uniform (0, 1) (Beta(α, β) for α = β = 1) prior distribution.

(a) It is possible to argue from reasonably elementary principles that in this binomial
context, where Θ = (0, 1), the Beta posteriors have a consistency property. That
is, simple arguments can be used to show that for any fixed p0and any ε > 0, for
Xn ∼binomial (n, p0), the random variable

Yn =

∫ p0+ε

p0−ε

1

B(α +Xn, β + (n−Xn))
pα+Xn−1(1− p)β+(n−Xn)−1dp

(which is the posterior probability assigned to the interval (p0−ε, p0+ε)) converges
in p0 probability to 1 as n → ∞. This part of the problem is meant to lead you
through this argument. Let ε > 0 and δ > 0.

i) Argue that there exists m such that if n ≥ m,
∣∣∣xnn − α+xn

α+β+n

∣∣∣ < ε
3
∀xn =

0, 1, ..., n.
ii) Note that the posterior variance is (α+xn)(β+n−xn)

(α+β+n)2(α+β+n+1)
. Argue there is anm′ such

that if n ≥ m′ the probability that the posterior assigns to
(

α+xn
α+β+n

− ε
3
, α+xn
α+β+n

+ ε
3

)
is at least 1− δ ∀xn = 0, 1, ..., n.
iii) Argue that there is an m′′ such that if n ≥ m′′ the p0 probability that∣∣Xn
n
− p0

∣∣ < ε
3
is at least 1− δ.

Then note that if n ≥ max(m,m′,m′′) i) and ii) together imply that the posterior
probability assigned to

(
xn
n
− 2ε

3
, xn
n

+ 2ε
3

)
is at least 1 − δ for any realization xn.

Then provided
∣∣xn
n
− p0

∣∣ < ε
3
the posterior probability assigned to (p0 − ε, p0 + ε)

is also at least 1− δ. But iii) says this happens with p0 probability at least 1− δ.
That is, for large n, with p0 probability at least 1 − δ, Yn ≥ 1 − δ. Since δ is
arbitrary, (and Yn ≤ 1) we have the convergence of Yn to 1 in p0 probability.

(b) Vardeman intends to argue in class that posterior densities for large n tend to
look normal (with means and variances related to the likelihood material). The
posteriors in this binomial problem are Beta (α + xn, β + (n− xn)) (and we can
think ofXn ∼Bi (n, p0) as derived as the sum of n iid Bernoulli (p0) variables). So
we ought to expect Beta distributions for large parameter values to look roughly
normal. To illustrate this do the following. For ρ = .3 (for example ... any

2



other value would do as well), consider the Beta (α+nρ, β+n(1− ρ)) (posterior)
distributions for n = 10, 20, 40 and 100. For pn ∼Beta (α+ nρ, β + n(1− ρ)) plot
the probability densities for the variables√

n

ρ(1− ρ)
(pn − ρ)

on a single set of axes along with the standard normal density. Note that if W
has pdf f(·), then aW + b has pdf g(·) = 1

a
f
( ·−b
a

)
. (Your plots are translated

and rescaled posterior densities of p based onpossible observed values xn = .3n.)
If this is any help in doing this plotting, Vardeman tried to calculate values of
the Beta function using MathCad and got the following: (B(4, 8))−1 = 1.32 ×
103, (B(7, 15))−1 = 8.14× 105, (B(13, 29))−1 = 2.291× 1011 and (B(31, 71))−1 =
2.967× 1027.
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